Backward perturbation analysis for scaled total least-squares problems

نویسندگان

  • Xio-Wen Chang
  • David Titley-Péloquin
چکیده

The scaled total least-squares (STLS) method unifies the ordinary least-squares (OLS), the total leastsquares (TLS), and the data least-squares (DLS) methods. In this paper we perform a backward perturbation analysis of the STLS problem. This also unifies the backward perturbation analyses of the OLS, TLS and DLS problems. We derive an expression for an extended minimal backward error of the STLS problem. This is an asymptotically tight lower bound on the true minimal backward error. If the given approximate solution is close enough to the true STLS solution (as is the goal in practice), then the extended minimal backward error is in fact the minimal backward error. Since the extended minimal backward error is expensive to compute directly, we present a lower bound on it as well as an asymptotic estimate for it, both of which can be computed or estimated more efficiently. Our numerical examples suggest that the lower bound gives good order of magnitude approximations, while the asymptotic estimate is an excellent estimate. We show how to use our results to easily obtain the corresponding results for the OLS and DLS problems in the literature. Copyright q 2009 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the scaled total least squares problem

In this note, we present two results on the scaled total least squares problem. First, we discuss the relation between the scaled total least squares and the least squares problems. We derive an upper bound for the difference between the scaled total least squares solution and the least squares solution and establish a quantitative relation between the scaled total least squares residual and th...

متن کامل

Backward Perturbation Bounds for Linear Least Squares Problems

Recently, Higham and Wald en, Karlson, and Sun have provided formulas for computing the best backward perturbation bounds for the linear least squares problem. In this paper we provide several backward perturbation bounds that are easier to compute and optimal up to a factor less than 2. We also show that any least squares algorithm that is stable in the sense of Stewart is necessarily a backwa...

متن کامل

Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods

Minimum residual norm iterative methods for solving linear systems Ax = b can be viewed as, and are often implemented as, sequences of least squares problems involving Krylov subspaces of increasing dimensions. The minimum residual method (MINRES) [C. Paige and M. Saunders, SIAM J. Numer. Anal., 12 (1975), pp. 617–629] and generalized minimum residual method (GMRES) [Y. Saad and M. Schultz, SIA...

متن کامل

Estimation of Backward Perturbation Bounds for Linear Least Squares Problem

Waldén, Karlson, and Sun found an elegant explicit expression of backward error for the linear least squares problem. However, it is difficult to compute this quantity as it involves the minimal singular value of certain matrix. In this paper we present a simple estimation to this bound which can be easily computed especially for large problems. Numerical results demonstrate the validity of the...

متن کامل

Towards A Backward Perturbation Analysis For Data Least Squares Problems

Given an approximate solution to a data least squares (DLS) problem, we would like to know its minimal backward error. Here we derive formulas for what we call an “extended” minimal backward error, which is at worst a lower bound on the minimal backward error. When the given approximate solution is a good enough approximation to the exact solution of the DLS problem (which is the aim in practic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009